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ABSTRACT

Details of the computational techniques are presented for the solu-

tion of the stru,:ture of normal plane shock waves in the Bhatnagar-

Gross-Krook kir_etic model.

h INTRODUCTION

The structure of normal plane shcck waves in a mon-

atomic gas, using the Bhatnagar-Gross-Krook (B-G-K)

collision model in an iteration scheme starting from the

Navier-Stokes solution, has been the subject of Ref. 1

and 2. These works, however, do riot include any dis-

cussion of the computational techniques employed in

programming the iteration procedure on the IBM 7090,

an elaborate task which, at the end proved to be most

rewarding.

The principal object of this Report is to lay out a

process for an iterative solution of the B-G-K kinetic

equation. But, since a process may be well adapted to

one machine and poorly adapted to another, this Report

will be mainly concerned with first principles from which

to construct such rules as seem to conform best to the

idiosyncrasies of the particular machine in use.

A statement of the mathematical principles that are of

assistance in the design of the computational program is

presented in Section II, followed by a general discussion
of the Navier-Stokes numerical solution in Section III.

In Section IV the basic iterative equations are simplified

in order to be suitable for machine computation, and in
Section V the distribution function within the shock wave

is examined. Finally, in Section VI the numerical results

of Ref. 1 and 2 are used to gain some insight into the
effect of Mach number and estimate of errors on the rate

of convergence.
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II. GENERAL CONCEPT

In Ref. 1 and 2 the structure of shock waves is dis-

cussed on the basis of the Bhatnagar-Gross-Krook kinetic

equation written in the form

3/
v_--_ = i% An [F - f] (1)

with

r(x)
A = mR e.(T)

(9.)
¥

X --
AI

where f - /(v, x) is the velocity distribution function

along the direction of motion x of the gas perpendicular
to the shock wave; l/An is the relaxation time which

depends on the local state of the gas; A1 is the Maxwellian

mean free path ahead of the shock; and F(v, x) is the local
Maxwellian distribution function

n(x) {[v-u(x)] 2}F(v, x) - [2rRT(x)]_/z exp - _T--_ (3)

corresponding at every point to the average number

density

+_n(x) = f (v, x) dv (4a)

velocity

u(x) n(x)= f_+_
oc

and temperature

3Rn(x) T(x) = f ÷_

vx f (v, x) dv (4b)

[v - u(x)] _ f (v, x) dv

+¢¢
= - u_(x) n(x) + (v" v) f (v, x) dv

(4c)

To this we must add the condition that as x--_, the

distribution function f approaches the Maxwellian func-
tions

[(v,-o_) =F_ and f(v,+_) =F_ (5)

the parameters nl, u,, T_ and n_, u2, T2 defining F, and

F.., being related by the Rankine-Hugoniot conditions.

Formal integration of Eq. (1) for v, _ 0 respectively,

subject to the boundary conditions of Eq. (5), yields

f* _f_An }f_ (v, < 0, v_, v:, x) An F exp -- -- dx" dx'
{)x 1 , U j,

and (6)

f+ (v, > 0, vy, v.-, x) = An F exp -- dx" dx'

Equations (4a)-(4c) together with Eq. (6) form a sys-
tem of four equations with four unknowns, f, n, u, and T.

The solution of this system of equations can formally be

obtained by constructing a sequence of functions, nJ(x),

uJ(x) and TS(x). This process of iteration is seldom useful

for carrying the integration unless a good approximation

is available to use as a first approximation, n°(x), u°(x)

and T°(x) in the right-hand side of Eq. 4 and 6; otherwise

the convergence of the successive functions u s, n j and T _

to the solution of the equation becomes slow. Reference

2 shows that the solution of the Navier-Stokes equation

across the shock is quite adequate to use as initial input.

2
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III. SOLUTION OF THE NAVIER-STOKES EQUATIONS

The one-dimensional Navier-Stol:es equations for a

monatomic gas in steady flow are

d (nmu) = 0
d£

d--'_ nmu'_ + nmRT - -_ _ _ = 0 (7)

-_ nmu _ RT + 72 u _

4 du
+ u (lmRT - -_ _ -_x

The methods suggested in Ref. 3, 4, '.rod 5 for the solution

of these equations require the reduction of Eq. (7) to the
form I

dt 2 Pr [6(t+w)+B(1-w2)] [5+Bw]
dw 15 2(t+w)--B(1-w 2)

(8a)

dw 1._ 2(t+w)-B(] -w 2) (8b)
dx - 4 _---ff- M_ (5 + Bw) (_1£./_.1)

B - 15(M_ -1) (9a)
3 + 5M_

Cp and 3_+2_'=0 (9b)
Pr= _7

where t and w are normalized temperature and velocity

variables related to the actual nondimensional values by

Eq. (10a) and (10b). The nature of Eq. (8) is such that

in the t- w plane t and w vary from wl = 1 and t_ = - 1

(nodal point) to w2 = - 1 and t2 = + 1 (saddle point) for

the whole range of the shock profile

The present computations were carried out on the IBM

7090 starting from the saddle-point singularity (down-

stream from the shock) and following the standard text-

book method of step-by-step integration of the direction
field.

Input: For a given Mach numbel M1, the initial slope

dt/dw at the saddle point is determined from Eq. (8a) by

'See Ref. 5, Appendix B.

rHospitars rule. For the purpose of this iteration scheme

it is necessary to use a fine increment of ±w = 0.002.
The Prandtl number Pr = 1 remains constant through-

out the shock, and the viscosity _ is defined as a function

of the temperature.

Procedure: First, t as a function of w is calculated

(Eq. 9); then the profile in terms of x is obtained by taking

the origin of the x axis at the point of maximum velocity

gradient dw/dx .... and by integrating Eq. (8b) starting

from x = 0 and proceeding upstream to x_i_ and down-

stream to x_l_. The effect of round-off errors in the early

intervals of this integration builds up rather fast, so that it

is necessary to keep a large number of guarding figures

and work to eight decimals. To achieve this accuracy at

high Mach numbers it is necessary to apply a fourth-order

Runge-Kutta integration formula.

Output: The following flow parameters were calculated,

tabulated, and stored in the memory of the computer

(superscript 0 refers to the Navier-Stokes solution, and

subscript 1 refers to the upstream conditions):

T°(x) _ 15 - B 2 + 2Bt
O° (x) - T1 15 B 2 -- (10a)

UO(x) _ u°(x) _ 5 + Bw
u_ 5 + B (10b)

NO(x ) __ n°(x) _ 1
n, u°(x)/m (lOe)

X[_g U°(x) - _°(x) (iOd)S"(x) = M'V'-O_(x) _(x)

and

LO(x ) _ A°(x) _ _"(T)/_, (lOe)
A, NO(x)_

_o =xr_)<O; _o,_,=x_,>O

Following the tabulation of this set of five parameters,

an appropriate interpolation formula is chosen. Here, the

use of a third-order polynomial is convenient in accord-

ance with the monotonic nature of Eq. (I0). For extrapola-

tion it is useful to put a close in the program requiring

the flow parameters to be equal to their respective con-

3
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stant upstream values for x < _o , and downstream values

for x > _o .

The program also calculated, stored, and retained the

following shock constants:

Sl Y- 1 (11a)

M_ +3 (11b)S2 = 5M_ - -

N2 - n2 _ 4M_
nl M_ + 3

Tz _ 5Ml + 14M_ -3

T1 16 M_

L2- A2 -- /x_//xl

(llc)

(lld)

(lie)

The average time required to solve and compile this

portion of the program is less than one minute.

4
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IV. SOLUTION OF THE B-G-K EQUATIONS

The essence of the iteration proceciure can be described

very briefly. The B-G-K distributi(n function [1 (v, x)
¥

of Eq. (6) is first prescribed in terms of n °, u" and T ° to read

where

f_ = L _'_A°(X')vxn°(x') F°(v' x_)

exp {L, A°(x'')n_(x'')- _ vx dx"} dx'

no(w) { [. _ ,,o(x.)] -_._FO(v,x') = [2_-RT"(x')]3/_exp - 2RTO(x,) j

(12)

then substituted into Eq. (4) to yield the new values of

the moments u'(x), n_(x), T'(x), which in turn generate
the next step in the iteration scheme

The processes and arguments by which nl(x), ul(x) and

T'(x) are solved may be properly illustrated by consider-

ing as a specific but typical example the first moment
n'(x)

,,,+x)=S+:S=+:[S-:'f'- +L: f "q

Equation (13) can be integrated immediately with respect
to v_ and v_ and reduced to read

2nl(x) _ L -_ L ÷_ N"(x')ln_ L"(x') _7

exp- {[,- S(x')]_+ h"(_'X)}dx'd,1

+_S" N<'(x') 1

exp- {[,1- S(x')]'-' + h"___((r',x___)}dx' d, 1 (14)

where

U
S=

_o/_
L°(x ") = NO(x ,) [®°(x')]

h°(x ', x) = _V'; [O<,(x,)]-'a f', [O°(x")]'_L`>(x'')
dx p '

(15)

with x' and x denoting, respectively, the lower and upper

limits of the integral with respect to x". Consequently,

h"(x',x) >_o 06)

and the integrand is limited and does not change sign.

Hence it can be shown analytically that the above func-

tion is always convergent.

A. First Iteration

The function n I (x) given in Eq. (15) involves a set of

infinite limits which are impractical for rapid numerical

calculations. It is possible, however, to adapt each term

of this integral for machine computations by considering

first the integrand over the path of integration _7 = 0

± _ ; for h°(x ', x) v/=0 the part corresponding to large

furnishes a contribution which becomes smaller as '1

becomes larger. Thus the apparent advantage of this

consists in the fact that a truncation of the path of inte-

gration with respect to n at a point where

exp-{(_-SO)2+h'>(x',x).}_lO-:,_
_7

would leave the calculations with substantial accuracy.

Second, the fact that Eq. (10a)-(10e) are tabulated con-

stants equal to their respective Rankine-Hugoniot, values

for -_ < x' < _0 andS° < x' < +_ may be used
to integrate Eq. (15) analytically with respect to x' over

portions of the path, _0_ __ and _ +o0. How-
ever, when this integration is performed there will arise

for x > _o and x < _0 operations which cannot be han-
dled by digital computations. Therefore, in order to

satisfy Eq. (16) at all times, and thereby evade such

operations, it is necessary to introduce a symbolic func-

tion H(a) defined by

H(a) = 1 a > 0
=0 a<0 (17)

Performance of these simplifications may be employed to

advantage to develop the final expression of n_(x) into

5
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2N'(x) -- exp - [7 -- S°(x')] z + h°(x" x). dr dx'
= tt (_ - x) L°(x') ,1

fo+=f _'° N°(x')lexp-{['l- S°(x')] _+ h°(x'-'x)'} d,ldx'- n (x - _ ) L°(x ') '7

x/; f-" {(,_ _ s_y +h°(e,_)_-- H (_o _ x)-_- N2 Jo exp - _ y
d,1

_/;fo+= { h°('° x)}+n(x-_°) T exp- (_-$1) z+ ' d,/

v7 fo-*- H (x - _ ) wN_ exp - {(+/- $2)'} dr

+ U (_ - x) exp - {(_ - S0 _} a,7

Similarly Eq. (4b) and (4c) become

2U'(x) N'(x) f -*° [_°* U°(x') N°(x ') { h°(x" x)}= n (_o _ x) LO(x,) SO(x.,) exp - [,7 - S°(x')] z -4- d,1 dx'
,y. rl

f++f,+, {- n (x - _o) LO(x,) SO(e ) exp - ['7 - S°(x')] _ + d,7 dx'
dO j8 v/

,V _ 1 - {('1 $2) 2 + h°(_-H(, o -x)--_-_-_fo _exp- - '7 'x)} d'7

+H(x-_O-g-_ re×p- (,7-S0'+ h°(_'x)._ d,7

v_lf -®- H(x-¢°)---_-._ _exp- {(,/- Sz)_)d_

x/_ 11+®+ H(_ ° -- x)-_-_ _exp --{(+/- S,)2} d,/

(18)

(19)

f O°(,:') ÷ lexp _ {[,_ _ SO(x,)],_ + h°(x',x)} d,Tdx ,80'(x) N_(x) = H (_o _ x) Z°(x ') ,I
do J_

f+_ l_ OO(x')N°(x ') _2+ 1 exp _ {[ _ _ S°(x')]_ + h°(x',x)_d,ldx,
- H(x-_°)} ° J, LO(x ,) ,7 "1 ,

-H(_O-x)_--_O_N_ (_ + 1) exp - (,_ - S_)_ + ; d,

+ n (x - ,_I)-2-Jo (,i' + 1)exp - (,_- S,y + h(_'_',_x) d,_

+ H (8 - x) (_ + 1) exp - {(_ - S1) 2 } d_

-- 2 N'(x) [S, U'(x)] _ (20)

6
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This may appear a rather elaborate form of Eq. (4) but,

in fact, is quite convenient for nu_aerical computations.

Input: As already mentioned, the tabulated and stored

results of the Navier-Stokes solutioiL constitute the input
to the first iteration. The interval used is

An = 0.1

However, in order to keep the int,_gration with respect

to x' correct, in each interval, witifin the tolerance for

round-off error, two sets of interval_ are needed:

AX' = ±X" = 0.01 for x- x' 1_0.1

=0.1 for x-x'[>0.1

In the computations reported in Ref. (1) and (2), the

equations were computed for 30 different values of x.

For the first point the value of x(1 _ _0 _> 0 is taken

with ten points between 0 and _. The last x(3oj <
< ¢_ < 0 is determind by trial and error until 0l(x)

Ul(x) _ N'(x) ---* 1 as x _ x(:_o_.

Procedure: Equations (18), (19), and (20) are evaluated
simultaneously for each value of x. The first and second

terms are computed numerically us,ng a Gaussian quad-

rature formula in each interval. A step-by-step integra-

tion is initiated by evaluating h ° Ix', x) at x' = x +

± x', and the integrand is determined by interpolating the

values of the other parameters at the required value of

x'. The same procedure is repeated for the following val-

ues ofx' = x + k,x x'; thena se! of integrations with

respect to _/ is carried out for the set of values of x'.

Finally, interpolation with respect to x' is employed to

integrate the functions with respect to x'. The evaluation

of the third and fourth terms is red _ced to a single inte-

gration with respect to ,/(Ref. 6) by evaluating separately

h 0 (_o, x) and h ° (_o, x) for all values ,)f x.

From the behavior of the solutior reported in Ref. (1)

and (2), we note here that the integral for x ) 0 (high

density side of the shock) is very sensitive to the step

size, to the accuracy of the initial Navier-Stokes solution,

and to the effects of rounding-off eJrors, while the same

thing cannot be said for x < 0 (low-density side).

The computational error introduced in evaluating Eq.

(19) and (20) is less than -+-5 X 10-3; however, due to

the predominant existence of 1/, 7 in the integrand of Eq.

(18), the computational error introduced in N(x) is rela-

tively bigger.

The reason behind computing and tabulating both N(x)

and U(x) is that the conservation of mass in the present

iterative solution is attained only after a certain number

of iterations; thus u_ (x) n_ (x) is not identically equal to

u, nl and u_ n_. except at x - ± o_.

Output: The tabulated flow parameters of the Navier-

Stokes solutions are now replaced by their corresponding

values from the first iteration, namely

o,(x), U_(x), N'(x), S_(x), L'(x)

_ = X(1) < 0and_ 1 = X(3o> > 0"2

The average time required to solve and compile this por-

tion of the program is around 90 seconds for each value
of X.

B. Further Iterations

The succeeding iterations are performed in a manner

similar to the one explained in Section IV-A simply by

replacing the i superscript by i + 1 and by using as input

the output of the ith iteration. To pursue the iteration

further requires a delicate study of the total error re-

garded as a build-up from round-off and truncation

errors. The first can be estimated in terms of the precision
of the tabulated results of the previous iteration, and the

latter depends on the formulas used in the program. This

suggests that at some stage the residual errors and the

generated errors might be of such magnitude that con-

tinuation of the process is unprofitable. In any case, in

estimating these errors we should suppose that the

equations to be solved are themselves exact.

The time required to compute and compile each itera-

tion on the IBM 7090 is estimated to be 10(8_ - _[ ) sec-
onds for each value of x.

7
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V. NUMERICAL EVALUATION OF THE DISTRIBUTION FUNCTION

The numerical process discussed in Section IV, together with the output of the last accurate

iteration, say the jth, may be employed to solve for the distribution function f.. (v, x) given by

Eq. (6).

Since the integrands of Eq. (6) do not change sign along their respective range of integration,

it can be easily shown that both

f+(v, x) f> 0 (21)

In the present calculations we are interested in evaluating Eq. (6) in the range of _ < x < _2 • For

x outside this range, Eq. (6) behaves like a Maxwellian.

In order to reduce Eq. (6) to a form compatible with the tabulated results of the ith iteration,
and suitable for machine calculation, we make use of Eq. (11) and (17) to get

f_ (v,. < O, v,,, v:, x)
n, (2rrRT1) -3/2

= _ r._ N, (x') 1 exp - {[q'- S;(x_)_]2+ q_ + q._ JS(x', x)} dx"2 J_l L;(x) OJ(x ') q, OJ(x') + %

+_exp-- I [%- S_v_..,]"+q_+_Of q_ + ]¢(_{q,,X)}

and (22)

L(v,,>O,v_,,v=,x)
n, (2_-RT:) 3t2

f¢ N; (x') 1 exp -- -[[q" -- SJ(x') _)12

2 J_ LS(x) OS(x ') q_" t OS(x')

7exp- {(q,--S,)_ -f q_ +q_ + ]S(_.{ ,x_........._)}

+ dx'

where

and

v
q--_, _{ <x<

,,/; [= x/OJ(x") dx"JJ(x',X)
= T fl, LS(x")

In evaluating Eq. (22) it is necessary to specify certain values of x within the shock profile, and

compute f for a wide range of q_, qy, and q,-. From the preliminary results (not yet reported)
conducted in connection with Bef. (1) and (2), it can be noted that, for an arbitrary value of

x = l, the major variation of f with respect to q_ is covered by the range

[v_ -- u _ q. -- S_ \
5<\ 2_ f",, < + s (23)

8
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VI. CONCLUSION

The fact that the present iterative process theoretically

converges to a given limit does not cf itself imply that the

results of the digital computation:, will approach this

limit. The present iterative solution is necessarily a finite

numerical process in which the co,wept of formal con-

vergence hardly plays any role, thcugh it is involved in

the analytical arguments by which the process is estab-

lished. Therefore, any conclusion about the convergence

should not be made without taking into account the error

introduced from the previous step::. In this connection

the rate of convergence of the pres_'nt work can best be

judged by the rate with which Eq. (14) approaches one,

uJ(x) n_(x)/ul n_ --_ 1, throughout the shock.

From the results reported in ReL (1) and (2) for this

type of initial input, it is seen that the rate of convergence

is a function of M1, the Mach number ahead of the shock.

At low Mach numbers, M_ = 1.5, one iteration is enough

to reproduce the Navier-Stokes solution which is known

to be accurate in this range. In the intermediate range,

M, = 3.0, the rate of convergence is slower, and the

iteration process is very sensitive to all the technical

aspects of the program such as step size, interpolation

formulas, truncation, etc. Consequently the range of low

Mach numbers, M, - 1.5, is recommended to check the

program for any mistakes or gross errors, while the inter-

mediate range, M_ = 3.0, is most adequate to judge the

wisdom of the assumptions involved in the numerical

process. In the range of high Mach numbers, M_ --- 5.0

and 10.0, the process converges relatively faster with the

low-density side, x < O, being less sensitive than the

high-density side.

9
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NOMENCLATURE

A parameter in the B-G-K collision model, see Eq. ('2)

B constant, see Eq. (9a)

C v specific heat at constant pressure

F Maxwellian distribution

f molecular velocity distribution function

H symbolic function, see Eq. (17)

h mathematical expression, see Eq. (15)

] mathematical expression, see Eq. (22)

K heat-conduction coefficient

L Mean free path ratio, see Eq. (10c)

M Mach number

ra molecular mass

N density ratio, see Eq. (lOc)

n number density

Pr Prandtl number

q molecular velocity (qx, qu, q_), see Eq. (22)

R Boltzmann gas constant

S speed ratio, see Eq. (10d)

T temperature

t normalized temperature, see Eq. (10a)

U velocity ratio, see Eq. (10b)

u mass velocity along the x-axis

v molecular velocity (v_, xu, v:)

w normalized mass velocity, see Eq. (10b)

physical axis along the direction of flow

x nondimensional physical axis, see Eq. (2)

n molecular velocity, see Eq. (15)

O temperature ratio, see Eq. (10a)

= /-_Mt_ __
A _ 6 n-mu Maxwellian mean free path

/. viscosity

Superscript

o initial input

1 first iteration

J jth iteration

Subscript

1 conditions at - _ (ahead of the shock)

2 conditions at _ _ (behind the shock)

10
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